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Abstract. Using a simple mean-field theory and MC simulations we demonstrate the existence
of a vapour–liquid transition in a fluid with purely repulsive Yukawa pair interactions and a
density-dependent screening parameter. This transition does not fit into the classical Van der
Waals picture, as the mechanism of liquid condensation is not caused by long-ranged attractions.
The phase separation is, instead, driven by the enhanced screening at higher densities, which
leads to ideal-gas behaviour at sufficiently high densities. A fluid at intermediate densities can
thus reduce its free energy by separating into a dilute vapour and a high-density liquid.

1. Introduction

The occurrence of a vapour–liquid transition in the phase diagram of simple fluids is well
known to be strongly related to the presence of long-ranged attractive interactions between
the constituent particles. This relation was first put forward by Van der Waals in the late
19th century [1]. The basic ingredients of his mean-field theory are the assumptions of long-
ranged attractions and short-ranged (excluded-volume) repulsions. With these assumptions,
Van der Waals could explain many features of the liquid–vapour transition. Most notably, the
theory reproduced—in accordance with experiments—a critical temperature, above which
no liquid–vapour transition takes place. Below this critical temperature, however, a phase
separation of the homogeneous fluid phase into a coexisting vapour and liquid is possible in
an appropriate density regime. The theory predicts a vanishing critical temperature if there
are no attractions between the particles. This implies that any non-zero temperature is above
the critical temperature in a purely repulsive system, so no vapour–liquid coexistence appears
in the phase diagram. In fact, it was only recently that the relationship between attractive
interactions and the existence of liquid–vapour coexistence was substantially refined. This
refinement, based on computer simulations [2] and density functional calculations [3],
quantified the minimum range of the attractions required for a stable vapour–liquid transition
as being about one sixth of the range of the repulsions. Shorter-ranged attractions are
not sufficient. Despite such refinements, the relatively crude Van der Waals prediction,
‘no attraction, no vapour–liquid coexistence’, is still generally accepted. In this article,
however, we challenge this statement, and show that a liquid–vapour transition is possible
in the absence of any attractions.
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We wish to stress that the present article is one concerned with principle, since
the model that we use is probably too idealized to allow for direct comparison with
experiments. Nevertheless, the model is an extreme case of well-established models for
colloidal suspensions, and does show a new mechanism for a vapour–liquid transition in a
fluid with only repulsive interactions.

2. The model

The system that we consider is a limiting case of the well-established DLVO model for
aqueous suspensions of charged colloidal particles [4]. According to the DLVO theory, the
effective pair interaction between charged colloids is of the screened Coulomb form [4].
For two spherical colloidal particles of diameterD and total charge−Ze (with e the proton
charge), this pair potentialw(r) reads

w(r) = Z2e2

ε

(
exp[κD/2]

1+ κD/2
)2 exp[−κr]

r
(1)

with ε the dielectric constant of the suspending medium andr the centre-to-centre separation
between the two colloidal particles. The range of the potential is determined by the screening
parameterκ, which is given in terms of the temperatureT and the total ionic strengthI by

κ2 = 4πe2I

εkBT
(2)

with kBT the thermal energy unit. If all of the micro-ions in the suspension are monovalent,
I equals the total number density of micro-ions, i.e.I = Zρ + 2ρs , whereρ is the colloid
density,Zρ the counter-ion density andρs the density of pairs of added salt ions.

ForD = 0 and in the high-salt limit 2ρs � Zρ (whereκ is approximately fixed for all
densitiesρ) this model reduces to a point-Yukawa fluid with fixed screening length. This
model was studied extensively by Robbins, Kremer and Grest [5]. An important result of
reference [5] is that there are three phases in the phase diagram, namely fluid and face-
centred cubic (FCC) and body-centred cubic (BCC) solid. For later reference we mention
here that the density dependence of the melting temperature, i.e. the phase boundary between
the fluid and either of the two crystalline phases, was shown to be accurately described by
a linear fit toκρ−1/3. We also note that it is not a surprise that no vapour–liquid transition
was found in reference [5], since the pair interaction (1) is purely repulsive.

In this paper we study, also forD = 0, the opposite low-salt limit 2ρs � Zρ, so the
pair interaction considered in the following reads

v(r) = Z2e2

ε

exp[−κr]
r

(3)

with

κ2 = 4πe2Zρ

εkBT
. (4)

The point-Yukawa potential (3) is again purely repulsive, so one does not expect a liquid–
vapour transition in this simplified model of a salt-free colloidal suspension. In the following
we show, however, that a fluid described by (3) and (4) behaves completely differently to
the analogous one in the high-salt limit. In particular, we show that there is a vapour–liquid
coexistence, while there isno crystalline phase at all for many values ofZ. Clearly, the
mechanism of the vapour–liquid coexistence differs from the standard one as described by
Van der Waals, since there is no cohesive energy (normally provided by the long-ranged



Vapour–liquid coexistence for repulsive point-Yukawa fluids 1221

attractions) that drives the liquid condensation. Instead, the liquid condensation is driven
by a new mechanism, which we discuss qualitatively below. We also show why one should
not expect crystalline phases in the phase diagram.

3. Theory

The key difference between the high- and low-salt limits is the dependence of the pair
potential (3) on the thermodynamic state defined byρ andT , throughκ (equation (4)). Here
we argue qualitatively that this dependence is responsible for the liquid–vapour coexistence
and the absence of solid phases. In order to analyse this dependence in detail, it is convenient
to introduce the so-called Bjerrum lengthλ = e2/εkBT , the typical particle separation
a = ρ−1/3 and the dimensionless densityρ∗ = ρλ3. We thus useλ as an (irrelevant) unit
of length and no longer treatT as an independent variable that determines the strength of
the interactions; instead, this role will be played byZ.

Figure 1. A measure of the ‘importance’ of the repulsionsR(ρ∗) ≡ v(a)/kBT versusρ∗ for
purely repulsive point-Yukawa particles withZ = 20, 30, 50, 100 and 400.

We first define a simple dimensionless measure of the ‘importance’ of the repulsions by
R ≡ v(a)/kBT , which is the value of the pair interaction (in units ofkBT ) at the typical
separationa. Using (3) and (4) andκa = √4πZ(ρ∗)1/6, it is easily checked that the density
dependence ofR is given by

R(ρ∗) = Z2(ρ∗)1/3 exp[−
√

4πZ(ρ∗)1/6]. (5)

In figure 1, we plotR(ρ∗) for several values ofZ. For all values ofZ we can distinguish
clearly a maximum ofR as a function ofρ∗. This maximum becomes larger upon increasing
Z. In the low-ρ∗ regime the algebraic prefactor(ρ∗)1/3 is dominant, leading to an increasing
importance of the repulsions as the density is increased. Such behaviour is to be expected
for repulsive interactions. At highρ∗, however,R decreases with increasingρ∗ due to
the dominant exponential factor in (5). At such high densities the screening becomes
exponentially stronger as the density increases, leading to a reduction of the repulsions.
In view of this it is easy to imagine a coexistence between a dilute and a dense phase:
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the dilute phase exhibits only weak repulsions because of the large distances between the
particles, while the dense phase exhibits weak repulsions due to the strong screening. At
intermediate densities there is phase coexistence if the entropy cost of phase separation is
more than compensated by the reduction of the repulsion.

Figure 2. The phase diagram in theρ∗–Z−2 plane for a fluid of repulsive point-Yukawa particles,
revealing vapour (V), liquid (L) and fluid (F) phases and a vapour–liquid (V+ L) coexistence
region closed by a critical point. The mean-field prediction of the liquid–vapour phase boundary,
based on (6) withr0 = a (see the text), is denoted by ——. The uncorrected simulated phase
boundaries are denoted by� and the long-range-corrected ones by× (see the text).

The simple analysis above is essentially correct at high densities, where the pair potential
decays exponentially over the range of the typical particle separationa. At low densities,
however, the range of the potential can be much longer thana, so v(a) is not necessarily
a qualitative measure of the importance of the repulsions. It is then more appropriate to
consider (a mean-field estimate of) the total potential energyUp in the system. Assuming
that the pair correlation function vanishes at separationsr < r0 and equals unity forr > r0,
we can write

Up

NkBT
= ρ

2kBT

∫
r>r0

dr v(r) = Z

2
(κr0+ 1) exp(−κr0). (6)

It is reasonable to chooser0 ≈ a, so κr0 ≈
√

4πZ(ρ∗)1/6. Then it follows directly that
Up/NkBT varies betweenZ/2 in the low-density limit and 0 in the high-density limit. This
result thus differs from the behaviour ofR(ρ∗), which vanishes not only at high densities
but also at low densities. Nevertheless, also from the density dependence ofUp, one can
understand a tendency for phase separation to occur: a fluid at intermediate densities can
reduce its total free energy by phase separating into an almost ideal high-density liquid
and an entropy-stabilized dilute vapour (with only a constant potential energyZkBT/2 per
particle, to be balanced by the high entropy of the sufficiently diluted vapour). This can be
quantified numerically by considering the mean-field Helmholtz free energyF , consisting
of the sum of the ideal-gas contributionFid = NkBT logρ∗ and the potential energyUp
in equation (6), i.e.F = Fid + Up. For the particular choicer0 = a we solved the co-
existence conditions (equal chemical potentials and pressures in the two phases) for a range
of values ofZ. The resulting vapour–liquid coexistence is shown as the full curve in the
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ρ∗–Z−2 phase diagram of figure 2. This representation is chosen becauseZ−2 plays the
role of an effective temperature. The phase diagram thus resembles that of an ordinary
fluid in the density–temperature plane, i.e. with a critical point below which liquid–vapour
separation takes place, while above it the homogeneous fluid phase is stable for all densities.
The critical point that follows from this simple mean-field analysis is characterized by
Z = 21.6421 andρ∗ = 1.3102× 10−6 with a mean-field critical exponent. As our purpose
here is to give a simple explanation for the mechanism of the liquid–vapour separation,
rather than to give a quantitative account, we are satisfied with the mean-field estimate of
equation (6) and the resulting mean-field exponents. Of course, one could try to improve
the mean-field description by using integral equations or density functional theory, but this
is beyond the scope of this paper.

Figure 3. The ratio of the temperaturẽT and the fitted melting temperaturẽTm, discussed
briefly in and below equation (7), as a function of the densityρ∗ for several values ofZ. For
Z < 300 there is no regime with̃T /T̃m < 1 and hence no crystalline phase. ForZ > 300 there
is a density regime withT̃ /T̃m < 1, but these crystalline phases are unstable with respect to
liquid–vapour coexistence.

We proceed with the theoretical analysis by showing that crystalline phases are not
likely to occur for many, if any, values ofZ. In order to see this one should realize that
every thermodynamic state point, characterized byρ∗ andZ here, can be mapped onto the
state variablesκρ−1/3 and T̃ used by Robbinset al in reference [5]. In this reference, the
dimensionless temperaturẽT is defined as the ratio of the thermal energy unitkBT and a
typical phonon energy of a FCC lattice{R} at densityρ. To be more specific, we have

T̃ = kBT

mω2
Ea

2
(7)

where the particle massm and the Einstein frequencyωE satisfymω2
E = (κ2/3)

∑
R 6=0 v(R).
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Using equation (7), it is thus possible to check whether a value forT̃ that corresponds to
a particular state point(ρ∗, Z) is below or above the (dimensionless) melting temperature
T̃m, for which an explicit fit as a function ofκρ−1/3 is given in reference [5]. We have
not used the more recent fit given in reference [6], which is based on computer simulations
[7]. This fit, although supposedly more accurate, only holds in the interval 3< κρ−1/3 < 7,
which is too small for our purposes. In figure 3 we plot the ratioT̃ /T̃m as a function of
ρ∗ for several values ofZ. Clearly, forZ < 300 we findT̃ /T̃m > 1 for all ρ∗, so the
system is always above the melting temperature and will not freeze into a FCC or BCC
crystal. ForZ > 300 there are state points with̃T /T̃m < 1, which are thus mapped onto
the FCC and BCC regions in the phase diagram of reference [5]. However, it turns out
that for the values ofZ that we considered numerically, the relationT̃ < T̃m only holds in
a finite-density regime, embedded in the vapour–liquid coexistence region. It is therefore
likely that the resulting crystalline phases are metastable with respect to the liquid–vapour
phase separation.

In order to verify these theoretical considerations and to quantify the crude estimates,
we present the results of MC calculations below.

Figure 4. The equation of state for purely repulsive point-Yukawa fluids withZ =
20, 40, 80, 100, 200 and 400 obtained from constant-pressure Monte Carlo simulations. The
equation of state of an ideal gas is denoted by ——. ForZ > 40, a plateau is found, indicating
a first-order phase transition; forZ = 20 there is no indication of a transition. The arrows
indicate the onset of hysteresis.

4. Simulations

In order to find the liquid–vapour coexistence in the model under consideration we performed
computer simulations. For several values ofZ we first performed constant-pressure Monte
Carlo simulations, in which the volumeV of the system fluctuates [8]. We considered
a system ofN = 250 particles at reduced pressuresP ∗ = βPλ3 ranging from 10−19 to
102. Most runs consisted of 1000 cycles per particle per thermodynamic state point. In
each cycle, we attempt a displacement of a random particle and a volume change of the
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system. For each pressure, we compute the averaged reduced densityρ∗. In figure 4 we
plot the resultingP ∗ as a function ofρ∗. When we gradually increase the pressure for
Z = 40–400, we find that the density increases smoothly initially, until it jumps to a much
higher value. In contrast, when we decrease the pressure smoothly, the density decreases
initially, but remains constant when we decrease the pressure even further, as shown by
the arrows in figure 4. This density jump and the corresponding hysteresis behaviour are
indicative of a strong first-order vapour–liquid transition. The enormous density difference
of the coexisting phases, as predicted by the mean-field theory, is probably responsible for
the different results of the constant-pressure simulations upon compressing and diluting:
as the maximum allowed volume change in the MC procedure is the volume itself, it is
possible to compress the system in one step by many orders of magnitude while the reverse
takes (too) many steps. Similar difficulties were encountered when we tried to simulate the
two coexisting phases directly by using the Gibbs ensemble Monte Carlo method [8]. In
this method the two coexisting phases are simulated simultaneously in two separate boxes,
which can exchange particles and volume in order to obtain equal chemical potential and
pressure in the two boxes. The constant-pressure simulations do not yield any hysteresis
or a plateau value forZ = 20, indicating that the homogeneous fluid phase is stable for
all densities. For all values ofZ we observe, as expected, that forρ∗ → 0 the pressure
approaches the pressure of the ideal gas. More surprisingly, we also observe that at high
density the pressure equals the ideal-gas pressure. Clearly, this is due to strong screening
at high densities.

Figure 5. The fluid Helmholtz free energy per particleF/NkBT obtained by thermodynamic
integration for N = 250 as a function of the reduced volumeV ∗ = V/λ3 for Z =
25, 50, 100, 400 and 1000. ForZ = 1000 we also show the FCC Helmholtz free energy
(•), which is clearly metastable. The straight line denotes the ideal-gas value.

In order to analyse the phase coexistence in more detail, we performed free-energy
calculations using a thermodynamic integration technique [8]. The integration path starts
at a non-interacting ideal gas at the desired density, proceeds by gradually switching on
the Yukawa potential and finishes at the system of interest. We used 100 steps along the
integration path and 1000 cycles per particle for each integration step. Each cycle consists
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of one displacement of a randomly selected particle. For several values ofZ we show the
resulting Helmholtz free energy per particle,F/NkBT , as a function of the reduced volume
of the systemV ∗ = V/λ3 in figure 5. We see that the free energy approaches the free energy
of an ideal gas at low and at high densities, while it is non-ideal at intermediate densities.
Fitting the free-energy curves enables us to compute the pressure and chemical potential as
functions of reduced volume. By equating the pressures and the chemical potentials in the
two coexisting phases, we determine the phase coexistence region. ForZ 6 21.5 we do
not find a vapour–liquid coexistence, while forZ > 22 there is a two-phase region. The
resulting vapour–liquid phase boundaries in theρ∗–Z−2 plane are indicated by the squares
in figure 2.

Figure 6. The Madelung energyUM for a finite system ofN = 256, uncorrected (�) and
corrected (◦), and for an infinite system (∗), all three at the uncorrected phase boundaries.

A problem with the simulations presented so far is the fact that the finite number
of N = 250 particles is not sufficient to fully capture the long-range character of the
interactions at low densities. It is not feasible to enlarge the number of particles to the
extent that the theoretically predicted coexisting vapour phase of, say,Z = 50 can be treated
properly, as this would requireN > 106 for a 1% accuracy in the numerical determination
of the potential energy. We have therefore corrected the free energies obtained from the
thermodynamic integration by adding the mean-field expression (6) for the potential energy,
with r0 = V 1/3/2. This implies thatr0 is taken as half the length of the simulation box;
the interactions within this distance have already been taken into account explicitly in the
simulations. This correction should work well at low densities. The resulting corrected
phase diagram is indicated by the crosses in figure 2. We conclude immediately from
comparing the uncorrected and the corrected simulation data that the correction affects the
phase boundaries considerably, although hardly at the liquid side and only moderately near
the critical point. The correction withr0 = V 1/3/2 can be shown to give reliable results
by comparing the Madelung energyUM of an infinite FCC lattice with that of a corrected
and an uncorrected finite FCC lattice ofN = 256 particles. The Madelung energy, or the
ground-state energy, is chosen because it can easily be enumerated exactly as a sum of the
pair potentials over the FCC lattice with a lattice spacing dictated by the density. In figure 6
we showUM for the state points of the uncorrected vapour–liquid coexistence, where the
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low values ofUM correspond to the well-screened liquid and the larger values to the longer-
ranged vapour. Clearly, the uncorrected value ofUM per particle in the finite system is
identical to that of the infinite system in the liquid-state points, and even in the vapour near
the critical point. Away from the critical point in the vapour, however, the uncorrected
values deviate substantially from the exact ones. Applying the correction, based on (6)
with r0 = V 1/3/2, reduces the discrepancy almost to nothing, indicating that this mean-field
correction is rather accurate. This is, moreover, a justificationa posteriori for the use of
this mean-field correction instead of a much more cumbersome alternative like the Ewald
summation technique. We also wish to mention that a relatively small correction to the
Helmholtz free energy, such as that applied near the critical point, has a profound effect on
the precise location of the vapour–liquid equilibrium in the phase diagram.

We note, finally, that we did not find any evidence for crystalline FCC and BCC phases
for Z 6 200. These phases could, however, be formed within a density interval in the
vapour–liquid coexistence region forZ = 400 andZ = 1000, but not outside this region.
The free energy of a crystalline phase was determined by thermodynamic integration from
an Einstein crystal to the actual system [8]. As an illustration, we display the (uncorrected)
Helmholtz free energy of only the FCC phase forZ = 1000 in figure 5. As expected from
the mapping discussed above, the free energy of the FCC and BCC crystal is lower than
that of the fluid at the same density. Nevertheless, the crystalline phase is unstable with
respect to the vapour–liquid coexistence. Consequently, we have not found any evidence
for a stable crystalline phase in the phase diagram.

5. Discussion

We have shown by using a simple mean-field theory and by computer simulations that a
vapour–liquid transition is possible in a fluid with a purely repulsive Yukawa pair potential.
This transition can therefore not be driven by the standard Van der Waals mechanism
of liquid condensation, which is based on the existence of long-ranged attractions that
provide cohesive energy. Instead, the mechanism here is provided by the dependence of the
interparticle potential on the thermodynamic state of the system, as the screening parameter
of the Yukawa fluid is density dependent. Consequently, the screening at high densities is
so strong that ideal-gas behaviour is recovered. Thus the free energy at high densities is
lowered to such an extent that it is favourable for a fluid at intermediate densities to phase
separate into a very dilute gas and a dense liquid. Moreover, due to the good screening at
high densities, no stable crystalline phase occurs in the phase diagram.

We wish to state explicitly that the currently discussed density-dependent screening
mechanism is not the only one that may cause fluid–fluid phase separation in fluids of purely
repulsive pair interactions. For instance, it has been argued that binary mixtures of small
and large hard particles exhibit such phase separation due to the depletion mechanism [9].
Whether or not this mechanism is strong enough to actually induce phase coexistence in
the binary hard-sphere mixture remains a matter of debate [10], but it is certainly strong
enough in binary mixtures of small and large parallel cubes on a lattice, and in mixtures of
thick and thin hard rods [11]. A second example of a mechanism for phase separation in
a fluid with a purely repulsive pair interaction was recently given in reference [12], where
the density dependence of the internal (free) energy of mutually repelling particles drives
the phase separation into a dilute and a dense phase.

Finally, we mention that it is not obvious whether the density-dependent screening
mechanism can in itself drive phase separation in experiments of salt-free colloidal
suspensions. The reason for this is that the effective Hamiltonian of such a salt-free
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suspension cannot be written as a sum of effective density-dependent pair potentials, but also
includes the density-dependent self-energy of the colloidal particles. This self-energy turns
out to dominate the phase separation completely, as was shown in reference [12], while the
density-dependent screening mechanism plays only a minor role. In order to show that this
latter mechanism can also drive a phase separation, we considered here the rather academic
case without the self-energy. There are also other reasons for which the model under
consideration can be regarded as rather academic. For instance, we set the concentration
of added salt to zero, whereas there is always a residual salt concentration of dissociated
water molecules, which will affect the low-density behaviour of the fluid. Moreover, the
high-density behaviour will be affected by the hard-core diameter of the colloidal particles,
which we assume to be zero in the present case. In particular, a non-zero diameter will
cause crystalline phases at sufficiently high densities for anyZ. A non-zero diameterD of
the colloidal particles also tends to weaken the mechanism discussed in this paper, since
the effective charge number increases by the DLVO factor exp[κD/2]/(1+ κD/2) as the
density increases (see (1)). Consequently, the repulsion at high densities will be relatively
strong as compared to the point-particle case. Although the mechanism discussed in the
present paper is therefore not the main one in these suspensions, itdoes contribute to
the phase separation. In this light the present study must be seen as an illustration of a
new mechanism that drives vapour–liquid phase separation in a fluid with purely repulsive
potentials.
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